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Abstract—Radar sensors can be used for analyzing the in-
duced frequency shifts due to micro-motions in both range
and velocity dimensions identified as micro-Doppler (©-D) and
micro-Range (u-R), respectively. Different moving targets will
have unique p-D and p-R signatures that can be used for
target classification. Such classification can be used in numerous
fields, such as gait recognition, safety and surveillance. In this
paper, a 25GHz FMCW Single-Input Single-Output (SISO)
radar is used in industrial safety for real-time human-robot
identification. Due to the real-time constraint, joint Range-
Doppler (R-D) maps are directly analyzed for our classification
problem. Furthermore, a comparison between the conventional
classical learning approaches with handcrafted extracted features,
ensemble classifiers and deep learning approaches is presented.
For ensemble classifiers, restructured range and velocity profiles
are passed directly to ensemble trees, such as gradient boosting
and random forest without feature extraction. Finally, a Deep
Convolutional Neural Network (DCNN) is used and raw R-D
images are directly fed into the constructed network. DCNN
shows a superior performance of 99% accuracy in identifying
humans from robots on a single R-D map.

I. INTRODUCTION

Identifying a moving target and classifying its motions are
grasping great interest in many fields. Numerous safety and
surveillance applications now require systems that can be used
for human motion identification, which are known as biometric
systems. Due to recent development in the field of industry,
robots are now widely used for assembly line automation.
Therefore, the need of a safe Human Robot Interaction (HRI)
environment is highly needed to avoid potential threats due
to robots powerful movements [1]. In order to provide a safe
HRI in such unstable environments, a reliable, real-time and
accurate human detection system is required.

Camera-based systems are used for human detection based
on feet and head recognition of the objects in the scene [2].
In [3], infrared cameras are used to enhance night vision
human detection for surveillance applications. However, all of
the vision-based sensors suffer limitations in different lighting
and weather conditions. In industrial safety applications, the
standardized sensor for safe human detection is LIDAR (Light
Detection and Ranging), where reflections from human legs
at knee level are processed to identify presence of a human
in the scanned area [4]. LIDAR sensors, though have many
limitations in detecting reflections from dark surfaces and
problems with outdoor harsh environmental conditions.

Unlike other vision based sensors, radar systems can still
detect targets behind obstacles or hard surfaces and can work
in harsh outdoor circumstances [5]. Due to developments
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in radar technology, especially in the micro-Doppler (u-D)
field, radar can be used nowadays to extract target’s bulk
motion (Range-Velocity) in addition to micro-motions as limbs
swings or even very fine vibrations due to vital signs [6].
Recently, u-D effect in radar has been extensively addressed
in different applications related to biometric systems, such as
gait recognition and limbs decomposition [7]. The author in [§]
focused on distinguishing human target from different objects,
such as animals based on their corresponding p-D signatures .
Others focused on using radar for safe pedestrian recognition
in automotive industry to apply an emergency brake to the car
when a pedestrian is detected at a close distance [9]. Most
of the previously mentioned papers applied human detection
based only on velocity analysis, where CW radars were used
to extract u-D signatures of the whole human gait cycle i.e,
more than 1 second duration. Signatures are used with either
conventional machine learning or Deep Convolutional Neural
Networks (DCNN) approaches on the collected dataset to
detect possible human presence.

However, these techniques did not address the real-time
classification aspect. Moreover, the size of the training dataset
proposed for designing a classifier is in the order of hundreds.
Such amount is not enough for designing robust classifiers,
especially in DCNN, as it is proven that for the training of a
DCNN, more training data can increase the model performance
[10]. In this paper, the human-robot classification problem is
addressed on collected FMCW radar Range-Doppler (R-D)
maps that can be computed in much shorter time intervals
(tenth of a second) [11]. Accordingly, real-time constraint
can be fulfilled and the amount of data used to train deep
models increased from hundreds to thousands of datasets.
Finally, a comparison between different learning approaches
is presented.

The paper is organized as follows: Section II introduces
the dataset preparation and R-D map computations. Section
IIT shows the use of conventional learning approaches on
hand crafted features. A novel data-driven approach based on
ensemble tree classifiers is presented in Section IV. In Section
V, a DCNN is designed and applied on R-D maps as images.
Finally, all approaches are compared with suggested future
work in Section VI.

II. DATASET PREPARATION

As mentioned above, R-D maps are used to build the
dataset for all presented learning approaches. A procedure
for R-D mapping was proposed in [12]. As illustrated in
Fig. 1, the procedure applies Fast Fourier Transform (FFT)
to each measurement with a specified FFT length (Npr7) on
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both dimensions of the data matrix. Each column stands for
one chirp with N, samples, while one measurement consists
of N, chirps. Accordingly, each R-D map can still contain
abundant information about the p-D and the u-R of the moving
object, as long as the range and velocity resolutions of the
radar are sufficiently high. A 512 FFT is used to achieve
acceptable resolution on both dimensions. After FFT, the range
information is estimated within each chirp, while the Doppler
data is estimated across all chirps in one sample. In this
way, one R-D map can be acquired from each data matrix.
Each element in the data matrix specifies the back-scattered
power at these particular range and velocity. These maps can
be visualized as a (512 x 512) heat map, where Doppler is
represented on the horizontal axis, ranges on the vertical axis
and the color RGB values from 0 to 255 represent the back-
scattered power.

2D-FFT mm)

Ns

" # Measurements

Np
Fig. 1: R-D mapping procedure.

A. Radar Parametrization

The FMCW radar used for data collection operates at
a carrier frequency f. = 25GHz at a maximum operating
bandwidth of B = 2 GHz with a chirp sweeping time of T}, =
0.5 ms. Based on the given bandwidth and Eq. 1, a reasonable
range resolution for our application is derived as R,.s =
7.5 cm, where c is the speed of light. Since the proposed human
robot detection is required on a room level, the maximum
measurement range is limited to R,,,, = 5m. Accordingly,
the number of samples per chirp ( see Eq. 2) can be calculated
as N, =~ 67 samples.

c
Rres 1
5B M
2B
N, = M ()
c

In [7], infrared motion captured data was collected on
different walking human subjects and it was proved that the
feet has the maximum swinging velocity component that can
reach up to 4.5m/s. Based on Eq. 3, a maximum velocity
Umae = 6 m/s can be achieved with the given carrier frequency
and chirp duration. This shows that our attained maximum
velocity can safely cover human walking test subjects. For the
requirement of human robot classification, a velocity resolution
of v,.es = 0.1 m/s is proposed. According to Eq. 4, the number
of chirps per measurement to the next power of 2 is N,, = 128
chirps. Using the given chirp duration (7},), one R-D map of
N, x N, size will theoretically take a measurement duration
of 64 ms. After taking processing delays into consideration, a
final measurement duration of one R-D map is still lower than
0.1s. This duration is far better for a real-time classification
constraint. Based on the proposed parameters, both range and
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velocity resolution are high enough to induce R-D maps that
contain sufficient information about the p-D and the p-R of
a complex human target. All presented radar design equations
are derived in [12].
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B. Dataset Build-up

To collect the data, measurements have been carried out on
10 test walking human subjects including different heights and
genders. There exist uncountable types of machines under the
name ‘“robot”. Since industry is addressed for the proposed
task, two industrial robots are included as subjects for data
collection and testing. The first robot is a moving mobile robot
assistant (Care-O-bot) developed by the robotics department
in Fraunhofer IPA [13]. The second robot is a 6-axis robotic
arm developed by Stdubli [14]. The subjects were moving in
random aspect angles in the radar detectable area during each
experiment. However, the case of exact lateral motion was not
included to avoid the extreme radial velocity fading effects
mentioned in [9].

During the data collection, each data sample is labeled with
the current target class. This labeling is required for supervised
learning to allow models to know the “standard solution”,
and thus learn the right model parameters. The collected data
together with the labels is divided into two subsets. The first
subset will be used for construction of the model. This subset
is then divided into two parts, one part called “training set” is
used to learn the model parameters, while the other part named
“validation set” is used to tune the model hyper-parameters,
such as the number of hidden layers and neurons of each layer
in a neural network. The second subset (test set) is employed
to assess the generalization performance of the final model by
comparing the model predictions with the true class labels.

The hold-out method is used to create the test set. For
a hold-out split, the complete dataset D is divided into two
disjoint subsets. One is used as the training set S, the other is
employed as test set 7. Mathematically, it can be expressed as:
D = SUT,SNT = &. The models are trained on S and tested
on T' to gain a glimpse about the generalization performance.
Since contiguous samples from one measurement can be very
similar due to the relatively high sampling frequency, a test
on randomly chosen samples from all measurements cannot
reflect the true generalization performance of the model. Con-
sequently, separate experiments of each object type is chosen to
build the test set, such that it takes up to 20% of the entire data
of this type. By this means, the whole test set contains around
20% of all collected data. Finally, a human-robot dataset with
7740 training samples and 1892 test samples is obtained, in
both of which the amount of human samples and robot samples
are comparable.

C. R-D Interpretations

The human walking motion is described as successive
periodic cycles in which two phases can fully describe a
gait cycle [6]. The first phase (swinging) in which there is
only one swinging foot and the other is touching the ground.
Within this phase, the human appears on the R-D map as a
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broad distribution in both R-D axes as shown in Fig. 2a. This
distribution represents a variety of velocities due to the bulk
moving body parts (torso and head), in addition to the swinging
effect of different body limbs (arms, legs and feet). In the
second phase (stance), no limbs swinging and only bulk motion
is observed. This phase is the dominant phase occupying 60%
of the gait cycle. By comparing robot motion and human stance
phase shown in Fig. 2b and Fig. 2c, respectively. It is clear that
the stance phase represents the main challenge in our human-
robot differentiation task, since both R-D maps are very similar
in the narrow horizontal distribution.
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(a) Human in swinging phase. (b) Human in stance phase.

250

200

150

Range [m]
o I o
- (52 n (4] w (5,
N
o
n
e |
o [4)) -
o o
o

Velocity [m/s]
(c) Robot in motion.

Fig. 2: Comparison between R-D maps of human and robot.

III. CONVENTIONAL LEARNING ON HANDCRAFTED
FEATURES

After obtaining the dataset as described in the previous
section, we tested several conventional machine learning meth-
ods with hand-crafted features extracted from the R-D maps.
Before the feature extraction, the multi-Otsu method is used on
R-D maps as an unsupervised image thresholding to extract the
R-D data corresponding to the target from the background [15].
By leveraging it, the original continuous RGB values in each
R-D map are quantized into 10 discrete levels. The lowest 5
levels from the 10 are neglected since they can be considered
as noise. Fig. 3 illustrates the effect of applying multi-Otsu
method to the R-D map of a human swinging phase shown in
Fig. 2a.

Range [m]

Velocity [m/s]

Fig. 3: The R-D map of human after multi-Otsu thresholding.
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Subsequently, features are extracted from each R-D map to
represent the “Human/Robot” differences discussed previously.
The features are also chosen, such that they do not reflect
an exact velocity or range to avoid overfitting. Thus, the
extracted features only considers the distribution over R-D
maps. The distribution can be represented as two features for
the range and velocity profiles, which are computed as the
differences between the maximum and the minimum detected
values in both R-D dimensions. Moreover, features as the
variance in velocities o2 and in ranges 0% can be seen as the
polynomial features of the standard deviation in both velocities
o, and ranges op with a degree of 2 [16]. Furthermore,
the covariance between range and Doppler values is also
considered as a feature. Finally, we have 7 features used with
different conventional machine learning techniques.

After the feature extraction, several classical machine learn-
ing methods have been implemented, trained and evaluated
with the feature data. The employed methods are (a) Decision
Tree, (b) Logistic Regression, (c) Support Vector Machine
(SVM) and (d) K-Nearest Neighbors (K-NN). However, de-
pending on features from one single R-D map, the performance
of all methods is less than satisfactory. This conduced to
the use of feature vector sequence accumulated from several
successive R-D maps (a so-called sample buffer). Each feature
vector sequence is concatenated by feature vectors extracted
from all successive samples in a buffer. Accordingly, the
number of features used will increase from 7 (in the case
of a buffer of size 1) to 70 (in the case of a buffer of size
10). As shown in Fig. 4, the classification accuracies of all
the methods increase as the buffer size increases. The best test
accuracy is reached using SVM as 95.3% at buffer size 10.
However, such large buffer size induces a latency of more than
1 second, which leads to problems in safety critical real-time
applications.
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Fig. 4: Accuracy curves of conventional learning methods.

IV. ENSEMBLE TREES WITH RESTRUCTURED R-D DATA

There are two main drawbacks of using conventional
machine learning methods with hand-crafted features. On one
hand, manual construction of features from raw data is time-
consuming and requires sufficient domain knowledge. On the
other hand, as described in the previous section, sufficient
performance can only be obtained at the cost of a large buffer
size, which directly correlates with the inference latency.

A. Ensemble Learning

Generally, the predictive power acquired by combining a
bunch of models is better than only using one single model.
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An Instance of this idea is “ensemble learning”, a family of
machine learning methods which perform the learning task by
constructing a group of individual learners and combine their
outputs together as the final output.

In machine learning, one must always be faced with the
bias-variance trade-off. Bias and variance are two types of
error of a predictive model. A simple model is prone to
underfitting of the training data; thus, having high bias, but
low variance. Conversely, complex models tend to overfit the
training set and thus having low bias, but large variance. From
this dilemma, two opposite procedures can be proposed for
decreasing prediction error: reducing the variance of complex
models and reducing the bias of simple models.

Krogh and Vedelsby proved in [17] that the error of an
entire ensemble E can be determined by:

E=E-D ®)

where E represents the average error of all individual learners,
while D evaluates the degree of diversity of individual learners.
This indicates that, in order to reduce the predictive error of
an ensemble model, the individual learners should be diverse.

Two common types of ensemble learning are bagging and
boosting. To realize the diversity of individual learners, both
bagging and boosting leverage varying training sets, on which
individual learners are trained. The difference lies in how the
varying training sets are obtained.

Bagging is the abbreviation of bootstrap aggregating,
which decreases the prediction error by reducing the variance
of complex individual learners. In bagging, varying training
sets are built by randomly sampling from the whole dataset
with replacement (bootstrap sample). After building a prede-
fined K training sets, K individual learners will be trained on
these K training sets. This means that, the individual learners
can be generated in parallel; hence, there is no strong depen-
dency between them. The hypothesis of the entire ensemble
can be acquired by unweighted averaging of the hypotheses of
all K individual learners. Therefore, the estimated bias remains
unchanged, while the estimated variance decreases by a factor
of K —1 [16].

Boosting improves the prediction performance by reducing
the bias of weak individual learners. It constructs diverse
training sets by iteratively assigning weights to data samples.
The weight, with which each data sample is attached depends
on how well this data sample can be predicted by the current
ensemble. By doing so, the training data distribution is mod-
ified, and thus resulting in more attention to the data portion
which is not well predicted so far.

Weak learners are simple models which can learn the
training data with an accuracy not much higher than 50%
(with a high bias and a low variance). Schapire proved in
[18] that a group of weak learners could be combined into a
strong ensemble achieving arbitrarily high training accuracy.
Boosting employs this idea and constructs a set of weak
learners sequentially. Each individual weak learner is induced
with the current weighted training set obtained in the manner
described previously. After generating the predefined number
of individual K learners, the ensemble hypothesis is obtained
by weighted vote of predictions made by all weak learners.
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By combining weak learners that focus more on currently mis-
predicted samples, both bias and variance of an ensemble will
gradually decrease.

B. Restructure of R-D Map

Before feeding the classifiers, the obtained R-D map should
be first restructured. Firstly, R-D map is of a two-dimensional
structure 512 x 512, which must be “flattened” to a one-
dimensional feature vector before feeding into the ensemble
classifiers. To convert R-D maps into feature vectors, elements
of each R-D map are averaged along both dimensions. This
results into a two S512-dimensional vectors obtained; one
representing the Doppler profile (row vector) and the other
one representing the range profiles (column vector).

Secondly, to guarantee a rational classification based on
target motion dynamics, instead of the absolute values, such
as velocity or range. The information regarding absolute
measurement values should be removed from the data, such
that only the R-D distributions would be used. We propose
a method to eliminate such information containing concrete
“target motion parameters” as follows: in both Doppler and
range profile vectors, the elements corresponding to high
power areas (distribution) are shifted to the middle of each
vector. Since the positions of these elements in both Doppler
profile and range profile correlate to the absolute velocity and
range of the target, respectively. By shifting the large-valued
elements in both vectors to the middle, clues to the velocity
and range of the target are eliminated. This algorithm works
by normalizing the power values of both velocity and range
profiles to the sum of all of their elements, respectively, to get
a weights vector for each. Then, a weighted average is applied
to both velocity and range indices based on their corresponding
weights, to get an average value close to the high power area
in each profile. Accordingly, the profiles are shifted from the
computed indices to the middle of the vectors. To reduce
the complexity, 128 elements are removed from both ends
of the shifted vectors to get 256 elements per profile. After
the dimension reduction, one 512-dimensional feature vector
is built by concatenating both restructured Doppler and range
profiles.

C. Performance

To study the feasibility of applying ensemble learning to
restructured R-D maps, random forest and gradient boosting
are tested. They can be regarded as outstanding representatives
of bagging and boosting, respectively. As shown in Table I,
the random forest achieves a worse performance compared to
the gradient boosting. This can be explained by two reasons:
(a) According to [19], boosted trees perform better than the
random forest for a low dimensionality problem with a data
dimension up to 4000. (b) Gradient boosting can achieve better
results than random forest for a binary classification problem
[20]. Thus, gradient boosting is considered as a better choice
for further investigations and comparisons.

TABLE I: Accuracy of random forest and gradient boosting.

Training Accuracy | Test Accuracy
Random Forest 99.88% 93.40%
Gradient Boosting 100.00% 97.85%
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V. CNN wWITH R-D MAPS

The CNNs proved to be extremely effective in image
classification, and since R-D maps are essentially images as
well. Therefore, the application of CNNs is reasonable in
this scenario. As previously illustrated in Fig. 2, a typical R-
D map of human has a broad horizontal distribution which
represents a variety of velocities of different body parts.
Through comparison, one can see that the R-D map of a robot
will only have a narrow horizontal distribution due to its rigid
body motion. For human eyes, the difference between both
patterns is already distinguishable. Accordingly, a CNN is able
to differentiate them as well.

For the proposed CNN model, an input image size of
(200 x 200) is used. This provides a trade-off between per-
formance and processing time. The grayscale color mode is
employed due to the following reason: in R-D maps, the color
represents the back-scattered power which correlates to the
target position relative to the radar and can be affected by
metallic parts on targets (e.g., wearable metal articles such as
watches or rings on human targets). In our approach, all of
this information should not be considered. Compared to the
grayscale, the RGB color mode is more sensitive to the noise
resulting from unwanted objects and clutters. Furthermore, by
using one-channel grayscale images (shown in Fig. 5) as input,
the computational complexity of both training and prediction
is reduced.

(a) Human (b) Robot

Fig. 5: Grayscale R-D maps of human and robot fed to CNN.

A. Network Architecture and Training

The network architecture used in our approach is inspired
by Lecun’s “LeNet-5" [21]. As illustrated in Fig. 6, it contains
a stack of 6 convolutional layers with Rectified Linear Unit
(ReLU) activation function. Each convolutional layer consists
of 16 convolutional kernels with a size of 3 x 3 and is followed
by a max-pooling layer. Furthermore, there is a fully-connected
layer consisting of 16 neurons after the convolutional layer
stack. The output layer at the end has one neuron with sigmoid
activation which is fully connected to the 16 neurons of the
previous layer.

The choice of the optimizer has an immediate effect on
the result of the training, as well as, the required time. For the
training of our proposed CNN, the modern adaptive optimizer
Adam proposed in [22] is employed. The Adam optimization
algorithm is currently one of the most popular algorithms
for training various types of Deep Neural Networks (DNN),
such as CNNs in computer vision applications and Recurrent
Neural Networks (RNNs) for natural language processing. It
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enhances the classical stochastic gradient descent algorithm by
enabling the computation of individual adaptive learning rates
for different parameters. In this manner, the Adam optimizer
delivers good optimization results, while maintaining a fast
convergence speeds.

Dropout is a simple and yet effective regularization tech-
nique proposed in [23] to prevent a deep learning model from
complex co-adaptations on training data, namely overfitting. It
randomly ignores neurons to a predefined ratio (i.e., dropout
rate) during training. During the forward propagation of each
training step, the ignored neurons can not contribute to the
activation of their connected neurons in latter layer temporally.
Moreover, the weights of the ignored neurons is not updated
during the back propagation. In our case, dropout has been
applied to the last fully-connected layer in all implementations
and a dropout rate of 0.5 is chosen. The choice of this
hyperparameter is based on trial-and-error.

After the best validation accuracy, achieved in the 30t
training epoch, both validation accuracy and loss, start to
oscillate around the same level. This indicates that the model
already fit the data to its best.

B. Performance

The proposed CNN achieves the best performance and
outperforms the boosting-based approach. Both training and
test accuracies achieved accuracies of 98.34% and 99.65%,
respectively. Table II, illustrates the confusion matrix of the
trained CNN model performed on the test set. Accordingly,
the misclassification in both classes is about 0.5% of the cases,
which is suitable for the required task.

TABLE II: Human-Robot confusion matrix of CNN.

True/Predicted Human Robot
Human 99.40% 0.56%
Robot 0.60% 99.44%

VI. CONCLUSION

This work presents the use of FMCW radars to distinguish
humans from robots in an industrial environment based on
their velocity and range distributions. Since the required task
involves aspects of human safety, a real-time detection tech-
nique is proposed based on R-D maps that consume much
shorter time intervals than p — D signatures. Accordingly,
the use of R-D maps increases the number of datasets used
for designing classifiers, thus a more robust classification is
expected. Moreover, the range dimension can be used as an
additional feature in classification and can help in determining
how far a target is from the radar. Based on the target’s
classified type and range from the radar, special actions can
be taken in such situations.

About 10,000 equally distributed R-D maps are collected
from different human and industrial robot subjects. To gen-
eralize the classification on different surrounding clutters and
noise, the measurements are all taken in different test areas.
Furthermore, during each experiment test subjects are moved
in front of the radar with different aspect angles to address
different motion patterns and angles of incident. The collected
R-D maps are then applied to different machine learning and
deep learning approaches.
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Fig. 6: Proposed CNN architecture on R-D maps.

Conventional learning techniques are first applied for the
“Human/Robot” classification problem based on handcrafted
features. The features are extracted to include the distribution
in both R-D dimensions without specific ranges or veloci-
ties. Seven features are extracted from each R-D map and
applied to classical learning approaches as SVM and K-NN.
Unfortunately, the achieved performance at one R-D map is
always lower than 90% which is not sufficient for our task.
To achieve an acceptable performance, the seven features are
extracted over successive R-D maps and concatenated as a
sequence of feature vectors. In that case, SVM attained the best
test accuracy of 95% on 10 successive buffers. Although the
achieved accuracy is acceptable, 10 buffers requires a latency
of 1s on our current radar parametrization. This reflected that
conventional techniques affects the required real-time aspect.
This motivated the demonstration of a novel ensemble tree
learning classifiers on restructured R-D data. In this part, a 2-
dimensional mean is computed on each R-D map to get range
and Doppler profiles. The extracted profiles are then shifted
and restructured to include the patterns without exact velocity
or range values. The restructured R-D data is concatenated
in one vector as 512 samples and fed into random forest
and gradient boosting classifiers. The gradient boosting attains
a performance of 97% on one R-D map, outperforming the
random forest and conventional techniques. Finally, a 6 layers
CNN was trained on grayscale R-D maps and the trained
network was shown to outperform all other techniques with
a test accuracy of 99% on one R-D map (latency of 0.1s).

This work addresses only the classification of a single
moving target in the radar area. Extending the idea with
Multiple-Input Multiple-Output (MIMO) radars can include
estimating the angle of arrival; thus, the exact position of a
moving target can be identified. Based on such positioning,
the detection and classification of multiple subjects in the
test area can be addressed. The presented approaches included
the classification of moving human and robots only. However,
static human detection must also be considered by means of
vital signs or detected radar cross sections.
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