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Abstract: Coating systems used for anticorrosion protection usually consist of a primer,
intermediate layers, and topcoats. Zinc-rich primers, which serve as cathodic and barrier
protection, are widely used for the corrosion protection of steel structures. Due to the
fact that the functioning of the above-mentioned coatings is related to the conduction of
galvanic current, these types of coatings are highly pigmented with zinc (up to 80 wt%
in the dry coating). This may result not only in a deterioration of the performance of the
coating system but also have a negative impact on the environment. Taking the above into
account, solvent-based and water-based organic epoxy primers with zinc content reduced
to approximately 50% have been developed. Zinc pigments of different shapes and with
different surface treatments were used in the primers, as well as pigments without chemical
treatment but with the addition of nanoparticles. It was found that, depending on the type
of zinc pigment, both the developed solvent-based and water-based primers demonstrate
good protective properties comparable to traditional zinc-rich coatings. Water-based paints
tend to absorb more moisture compared to solvent-based systems, but their water uptake
reversibility is limited. Moreover, the organic treatment of zinc flakes helps to improve this
water uptake reversibility, improving the mechanical properties of coatings.

Keywords: solvent-based zinc; water-based zinc primers; modification of zinc pigments;
corrosion protection

1. Introduction
Due to its mechanical properties, its moderate costs, and its availability in large

quantities, steel is an indispensable construction material. Because of its sensitivity to-
wards corrosion, however, corrosion protection—mostly processed by anticorrosive paint
systems—is inevitable. Typically, such a paint system consists of a primer, one or several
intermediate coats, and a topcoat. The function of the primer is to ensure good adhesion to
the substrate and to protect it from corrosion, mainly by the surface-active compounds that
are present there. For this purpose, zinc pigments are often formulated into such primers,
where they act as sacrificial anodes [1,2]. This means that the substrate is protected by Zn
metal or alloy that is electrochemically more active than the substrate to be protected (stage
of cathodic protection) [3,4]. During the lifetime of such systems, Zn is transformed into its
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corrosion products—generated through the anodic dissolution of zinc particles—which
seal the pores to a point at which the system becomes electrically nonconductive (barrier
stage) [5,6]. Since the performance of sacrificial coatings is based on the transfer of galvanic
current, which implies metallic contact between the individual active pigments, such coat-
ings are typically very highly pigmented [5,7–15]. High zinc content in coatings, equal to
or exceeding critical pigment volume concentration (CPVC), often causes a decrease in
cohesion and an increase in porosity as well as deterioration of flexibility, impact resistance,
and resistance to other mechanical factors [16–18]. Therefore—and because Zn is known
to be harmful to the environment—the main direction of research on new zinc-pigmented
primers is to reduce its content or partially replace it with other pigments or fillers, in-
cluding nanoparticles. The second direction of research in the field of zinc primers, forced
by requirements regarding reducing VOC emissions into the atmosphere, is paints based
on aqueous dispersions. In order to reduce the content of zinc in anticorrosive coatings,
many modifications of zinc-rich primers were carried out to solve problems connected
with very high pigment volume concentration (PVC). Their goal is also to improve the
anticorrosive properties and extend the cathodic protection period. One possibility is
an addition of nanoparticles—graphene [19–27] or carbon nanotubes (CNT) [22,26–30] as
well as conductive polymers [31–35]. The use of carbon nanoparticles with a very low
percolation threshold (<0.1%) makes it possible to reduce the content of zinc particles below
their percolation threshold.

Jiaqing Guan and Xusheng Du [19] incorporated three-dimensional reduced graphene
oxide (3DRGO) doped with N heteroatoms into the epoxy coating. 3DRGO, with a content
of only 0.05 wt%, improved the corrosion resistance of coatings more than the conventional
2-dimensional reduced GO (RGO) sheets and 3D graphene (3DG) with similar 3D struc-
tures. This can be attributed to the unique three-dimensional porous structure of 3DRGO
as well as N doping, which plays an important role in improving the interaction of 3DRGO
with the epoxy matrix, preventing its agglomeration, improving the barrier properties
of the coating, and increasing the electrical conductivity between Zn particles. An addi-
tion of graphene oxide (GO) with carboxylic, carbonyl, hydroxyl, and epoxy functional
groups, which are reactive locations for covalent and non-covalent bonds with organic
and inorganic compounds, to zinc primers ensured improved interaction between GO and
the polymer [25,36,37]. Results showed that the incorporation of graphene oxide modified
by functionalized silane coupling agent (2-(3,4-epoxycyclohexyl) ethyl triethoxysilane)
improved the corrosion resistance of epoxy coatings with functionalized GO content of
0.7 wt% [25]. Graphene can be used in both solvent-based and water-based paints. Some
researchers [38,39] studied the properties of water-based zinc epoxy paints with the ad-
dition of graphene in various amounts. They found that 0.6 wt% significantly extended
the cathodic protection period and improved barrier protection compared to coatings
containing zinc pigment alone. It was shown that the addition of graphene of 0.5 wt% was
already sufficient to improve the properties of water-borne zinc epoxy primers [40,41]. The
coatings had significantly better water resistance, and the corrosion rate was an order of
magnitude lower compared to coatings not containing this additive. Another possibility
for the partial replacement of zinc dust is to combine nanoparticles with intrinsically con-
ductive polymers [34,42–47]. Ramezanzadeh et al. [34] carried out the studies using GO
itself and with surface modification by highly crystalline and conductive polyaniline. They
showed that even the addition of GO/polyaniline composites in the amount of 0.1 wt%
provides both better cathodic protection and improved barrier properties of the coatings.

The improvement of the corrosion resistance of epoxy zinc coatings was also achieved
by the addition of CNT with a surface modified using polypyrrole in combination with
aluminum nanoparticles [43]. Nanoparticles of zinc were investigated as additives that
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increase conductivity and thus improve the anticorrosive properties of zinc-rich coat-
ings. Replacement of zinc dust (about 92 wt% Zn) with zinc nanoparticles in amounts
of 5–10 wt% in zinc-rich epoxy primers may extend the cathodic protection period by
increasing the electrical contact between the microparticles [48,49]. A small amount of
nanoparticles in the coating also improves the second stage of protection—sealing the
coating with zinc corrosion products. A small addition of a mixture consisting of nanozinc
and nanoclay additives also improved both the cathodic and barrier properties of the coat-
ings [49]. Highly efficient galvanic activity—at reduced film permeability—is often caused
by better connectivity of the pigments because of the lower average distance between the
particles. Interparticle distance decreases with the decreasing size of the particles, resulting
in decreasing electrical percolation thresholds [50,51]. As a result of the introduction of
pyrolyzed and gasified biochar nanoparticles (BCN) into a series of zinc epoxy coatings,
enhanced barrier protection was achieved, especially for formulations with lower zinc
content (10 vol% and 22 vol%) [52]. Gasified BCN-modified coatings with 30 vol% of zinc
pigment showed more than 600 h of efficient cathodic protection. Positive results were
also obtained by application in zinc-pigmented epoxy paint of nickel-20 chromium and
TiO2 nanoparticles. It was found that the added nanoparticles improved the hardness and
corrosion resistance of the coating significantly [53].

The properties of zinc coatings with a lower content of Zn can be influenced by
the different sizes and shapes of the zinc particles. Small zinc particles provide both
very good electrical conductivity owing to the good contact between the particles and
good zinc distribution in the coating [9,54]. Coatings pigmented with zinc flakes provide
effective protection at a lower PVC of approx. 50% than coatings pigmented with spherical
particles (PVC approx. 60%). Due to their larger specific surface area than spherical
Zn particles, they ensure greater electrical contact and better surface distribution of the
protective current. Kalendová [55] showed that the lamellar zinc particles exhibit the
highest anticorrosive efficiency at content as low as 20 vol%. Moreover, it was found
that the combination of spherical and lamellar zinc was the best in providing corrosion
protection [56]. Liuyan Zhang et al. [57] obtained several series of coatings containing
lamellar Zn (Al) pigments dispersed in silicone-acrylate emulsion-modified inorganic
silicate vehicles. The modified coatings with a mixture of Zn and Al pigments reduced
to 25 wt% provided satisfactory anticorrosive properties. Zinc flake-pigmented coatings
show better cathodic protection, but at the same time, the zinc flakes dissolve faster.
The addition of a small amount of anticorrosive pigments, e.g., zinc phosphate, may be
helpful in solving this problem [54]. Zn, ZnAl, and ZnAlMg alloys were used to replace
spherical Zn powders to develop environmentally friendly coatings with low pigment
content [58]. The results showed that the coatings with the use of all flake metals instead of
spherical zinc pigments were distinguished by better corrosion protection. Among them,
the ZnAl coatings displayed the best anticorrosive performance. An attractive modification
of zinc-pigmented coatings seemed to be an addition of zinc practices in the form of
fibers. Chunping Qi et al. [59] investigated the effect of adding 0.5 wt% zinc fibers on the
anticorrosive properties of coatings with 85, 75, and 65 wt% of zinc dust, but they did not
find significant improvement in their anticorrosion behavior. Chemical modification of zinc
particles improves the anticorrosive properties of zinc-pigmented coatings by reducing
the electrochemical activity of Zn and thus slowing down their dissolution in corrosive
environments. Modification with phosphoric acid 2-ethylhexyl ester and calcium ions
resulted in the formation of a 190 nm alkyl-phosphate-calcium complex layer on the surface
of the particles [7]. Improvement of the anticorrosive properties of coatings was achieved
not only by reducing the reactivity of zinc but also by increasing the affinity between the
layer formed on the zinc particle and the polymer matrix. Zinc particles modified using
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aqueous organosilane (OS) solutions showed higher resistance to dissolution than non-
treated zinc particles due to the formation on the surface of a zinc-OS layer approximately
10 nm thick [60]. The improvement of corrosion resistance was accomplished both by the
formation of an OS layer on the zinc particles and the subsequent reaction between the
functional groups of OS and the functional groups of the binder or curing agents. The
highest corrosion resistance showed the coating containing zinc particles treated with
bis-trimethoxysilylpropyl amine (BTSPA).

In the case of water-based zinc primers, chemical modification of Zn particles is also
used to avoid hydrogen evolution due to the high reactivity of zinc with water [61]. Gassing
of the paint causes defects in the coating surface as well as insufficient dispersion of zinc
particles in the vehicle. In our research, we focused both on solvent-based and water-based
organic epoxy primers with significantly reduced amounts of zinc pigments added in
various forms and, alternatively, with nanoparticles.

2. Materials and Methods
2.1. Materials

Zinc pigments of various shapes (dust, flakes), with and without chemical treatment
with silanes (wet and dry methods) and with the addition of 0.6 wt% of graphene or CNT,
were used in the study. The characteristics of zinc pigments are given in Table 1, and
graphene and CNT are in Table 2.

Table 1. Characteristics of zinc pigments.

Type of Pigment
Properties

Average Particle
Size, µm

Sieve Residue
at %

Density,
g/cm3

Special Surface
Area, m2/g

Content,
Mass Fraction, %

Zinc (spherical) 3.6 45 µm 0.001 7.1 −

Total zinc ≥99.0%
Metallic zinc ≥96.5%

Lead ≤0.003%
Cadmium ≤0.0005%

Iron ≤0.002%
Others Traces

Zinc (flakes) 13.7 >71 µm 0.1 0.8
(bulk density) 1.2 Metal purity 99.99%

Table 2. Characteristic of graphene and CNT.

Type of Pigment
Properties

Average Particle Size Density, g/cm3 Special Surface Area, m2/g Content, Mass Fraction, %

Graphene 6.22 µm (D50) <0.1(tap density) 253.22
Carbon >93.0
Oxygen <3.0
Sulfur <0.2

CNT 20 nm 0.03–0.05 150–250 Metal oxides content: <3

The pigment treatment was carried out according to the patent [62] using isopropanol
(wet method) and without isopropanol (dry method) as precipitate agents in the presence
of silane. Two types of silanes were used for chemical treatment: 3-methacryloxypropy
ltrimethoxysilane in the dry method and 3-glycidyloxypropyltrimethoxysilane in the
wet method.

Solvent-based samples were prepared by dispersing Zn pigments in the two-
component epoxy resin solution in xylene with an addition of butanol, additives, and
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molecular sieves. The following additives were added to the model paints: an organic
thixotropy agent based on a special diamide wax as a rheology modifier, micronized, highly
porous, crystalline aluminosilicate with pore openings of approximately 3
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sieve, a solution of an alkylammonium salt of a polycarboxylic acid as a controlled floccu-
lating wetting and dispersing additive, and a polymeric non-ionic dispersing and wetting
agent—highly effective deaerator concentrate based on polyether siloxane technology.

In the case of water-based samples, Zn pigments were dispersed in anhydrous epoxy
resin with additives and molecular sieves. Methoxypropanol was used as a coalescing
agent. The same additives were used in the solvent base composition, and additionally, a
solution of an alkylammonium salt of a polycarboxylic acid as a controlled flocculating
wetting and dispersing additive and polyether siloxane copolymer as a flow promotor with
deaerating properties. In both formulations, microtalc was used as an extender (the same
amount was used for each formulation).

Resins and additives were premixed using a 40 mm dissolver disk at 2000 rpm for
5 min. Next, zinc pigments and extenders were added and mixed at 2000 rpm until reaching
55 ◦C to activate the rheology modifier and then mixed for another 10 min.

The basic properties of solvent EP resin and aqueous dispersion are given in Table 3.

Table 3. Basic properties of solvent resin and aqueous dispersion.

Property Solvent EP Resin Aqueous Dispersion

Dynamic viscosity, mPa·s 20,000–30,000 (25 ◦C) 1000–5000 (23 ◦C)
Epoxy equivalent, g/mol 194–208 650–780

Density, g/cm3 1.15 (25 ◦C) 1.08 (20 ◦C)

The amount of zinc pigments in each paint was about 35 wt%, i.e., less than half of that
commonly used in zinc-rich paints. For comparison, the samples of paint with 60 wt% of
Zn dust were also prepared. The composition of the paint samples is presented in Table 4.

Table 4. Composition and symbols of test samples.

Symbol Vehicle Pigment/wt% in Paint

R0/1

Solvent-based epoxy

Zn dust/35
R0/2 Zn dust/60
R2/1 Zn flakes/35
R2/2 Zn flakes/23 + Zn dust/12
R2/3 Zn flakes/23 + Zn dust/12 + Zn phosphate/5

R3 Zn dust with wet treatment/35
R6 Zn dust/35 + graphene/0.6
R7 Zn dust/35 + CNT/0.6

F1/a

Water-based epoxy

Zn dust/60
F1/b Zn dust/35
F1/c Zn dust/18 + Zn flakes/7
F1/d Zn dust/18 + Zn flakes/7 + Zn phosphate/5
F1/e Zn dust with wet treatment/18 + Zn flakes/7
F1/f Zn dust/18 + Zn flakes with dry treatment/7
F1/g Zn dust/18 + Zn flakes with wet treatment/7

F1/h Zn dust/35 + graphene/0.6

EP1 Solvent-based epoxy
Commercial zinc-rich primers for comparisonEP2

F0 Water-based epoxy
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The protective properties of obtained coatings were tested in comparison with commer-
cial epoxy zinc-rich primers, both solvent-based and water-based. The first solvent-based
paints (marked as EP1) and water-based paints (marked as F0) are typical zinc-rich primers.
The second solvent-based (marked as EP2) is an innovative primer with a high content
of activated zinc, containing small hollow glass spheres with a diameter of ~40 µm and a
special auxiliary agent—an activator designed to activate zinc.

The paint compositions and commercial paints were applied by the airless spray
method on S235JR steel panels prepared by abrasive blasting up to Sa 2½ according to EN
ISO 8501-1 [63]. The thickness of the test coatings was about 60 µm.

2.2. Methods

The protective properties of coatings with reduced content of zinc pigments and
standard zinc-rich primers were studied by the following methods:

• salt spray test (SST)—salt chamber type BS1, Braive Instruments, Liège, Belgium;
evaluation after 500 h, 1000 h, and 1500 h of exposure,

• scanning Kelvin probe (SKP) detection of artificially inflicted samples,
• thermocyclic electrolytic loading (TEL),
• detection of water uptake reversibility (WUR).

Investigations of the coatings’ behavior under corrosive conditions were carried out
by salt spray test (SST) in a salt chamber (type BS1, Braive) acc. to EN ISO 9227 [64]. The
coatings were evaluated after 500, 1000, and 1500 h of SST in terms of corrosion visible on
the coating. The extent of damages was assessed according to a conventional scale (from
0—no damage to 5—the most damage), taking into account indicators given in [65]. Before
and after SST, mechanical properties were tested: adhesion by X-cut method (universal
method for different thicknesses, often used in practice) acc. to [66] and impact resistance
(measured in cm of weight drop from a height of 1 m) acc. to [67].

A scanning Kelvin probe (SKP) was used for the detection of artificially inflicted
samples after corrosive impacts. The instrument allows the determination of corrosion
potential differences through high-resolution, contactless measurements, even in the pres-
ence of insulating organic coatings. The best samples of zinc primers applied to Sa 2.5 steel
substrates (50 mm × 50 mm), which were exposed to salt spray testing, were placed on the
sample table of either a PAR SKP100e system, controlled by a PAR SCV 100 unit, or a KP
Technology SKP5050 system (Anfatec Instruments AG, Oelsnitz/Vogtl., Germany).

After alignment, the samples were scanned around a central artificial defect that
exposed the substrate, created by a 1 mm drill prior to salt spray testing. This area,
measuring 1 cm2, was scanned using either a 0.8 mm tungsten probe or a 1 mm gold
probe in the x/y direction with a resolution of 50 × 50. The probe potential was calibrated
relatively to a Cu/CuSO4 electrode. All potentials are given vs. SCE.

Thermocyclic electrolytic loading (TEL) was conducted to accelerate the corrosive
effects of an electrolyte solution and induce internal stress buildup, simulating the natural
temperature cycling that occurs under outdoor weathering conditions. The experimental
setup for this method, which enables short-term evaluation of the anticorrosive properties
of coating systems, is shown in Figure 1. For this approach, a PVC cylindrical tube (ø
25 mm, height: 20 mm) adhered to the surface of each test panel using silicone rubber
adhesive (Scrintec 600, Carl Roth GmbH, Karlsruhe, Germany).

During the tests, thermocycles ranging from 10 ◦C to 40 ◦C in sinusoidal intervals of 1 h
were applied. The temperature of the cooling plate was set to −10 ◦C, while irradiation was
provided by six evenly arranged IR emitters (G40, SPRUNGMANN Infrarottechnik GmbH,
Herford, Germany). These emitters were controlled by a SIN2-PID device (ELEKTRONIKA
JDROWA, Kraków, Poland), with the temperature sensor firmly attached to the surface of
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one test sample. The electrolyte cells were filled with 7 mL of electrolyte solution (3% NaCl
unless stated otherwise). Electrochemical impedance spectroscopy (EIS) measurements
were carried out using an ATLAS 0441 High Impedance Analyzer (ATLAS-SOLLICH,
Rebiechowo, Poland) in a two-electrode setup. The working electrode was the test panel
substrate, while a Pt wire (ø 0.5 mm) immersed in the electrolyte solution served as the
counter electrode. Measurements were performed with a modulation amplitude of 25 mV
across a frequency range from 100 kHz to 0.1 Hz.
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The water uptake of a coating leads to an increase in coating capacitance Cc, which
is proportional to the dielectric constant εr of the detected medium. Since the εr of a
typical coating ranges between 2 and 8, while εr of water (H2O) is approximately 80, water
absorption by the coating results in a noticeable increase in Cc. Therefore, Cc can be used as
an indicator of water uptake. By continuously monitoring the high-frequency capacitance
CHF during rapid hydrothermal cycling (sinusoidal temperature variations between 15 ◦C
and 40 ◦C in 30 min intervals, using 0.025 M KNO3 as the electrolyte), performed with a
Gamry Reference 600 (Gamry Instruments, Haar, Germany) in a two-electrode setup, CHF

vs. time diagrams can reveal changes in the dielectric properties of the primer systems
induced by this cycling.

Based on EIS data, CHF is calculated as follows:

CHF = (2πf |Z|HF sin|ϕ|HF)−1 (1)

where HF denotes the high-frequency data from the impedance spectrum (in this case,
HF = 100 kHz), |Z| represents the impedance modulus, and ϕ the corresponding phase
shift. The experimental setup is shown in Figure 2.
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3. Results and Discussion
3.1. Visual Assessment During SST

Effective protection against corrosion is provided by coatings containing 60 wt% of
Zn dust dispersed in both solvent-based and water-based resins (samples R0/2 and F1/a)
(Figure 3), but some of the compositions with reduced zinc pigment content also have very
good corrosion resistance.
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Excellent anticorrosive properties in the corrosion environment are demonstrated by
Zn pigments with wet surface treatment dispersed both in solvent-borne (sample R3) and
water-borne (samples F1/c and F1/d) vehicles (Figure 3). The wet process has proven
to be a more effective method of improving the corrosion resistance of coatings than the
dry method (sample F1/f). Very good results were also achieved in the case of coatings
containing nanoparticles of graphene (in both vehicles—samples R6 and F1/h) and CNT
(in the solvent-based one—sample R7).

All of these coatings mentioned above are as effective as the epoxy-modified zinc-
rich primer (EP2) and water-based F0 and exceed the properties of the other standard
solvent-based primer EP1.

Similar results were achieved for formulations containing a mixture of unmodified zinc
dust and unmodified zinc flakes (solvent-based R2/2, water-based F1/c). Coatings showed
slightly poorer anticorrosive properties, which can be improved by the incorporation of a
small amount of zinc phosphate as an anticorrosive pigment into the formulations (samples
R2/3 and F1/d).

Before SST, all coatings with reduced zinc pigment content were characterized by
very good mechanical properties—their adhesion measured by the X-cut method was 0,
and impact resistance was 100, in contrast to the commercial EP1 coating, which had an
adhesion of 3 and impact resistance of 80. During exposure to a corrosion environment,
poorer adhesion showed coatings where corrosion was observed. Adhesion of the sample
R2/1 decreased to 3, R2/2 to 2, and F1/f to 1.

3.2. Electrochemical Measurement
3.2.1. Thermocyclic Electrolytic Loading (TEL)

Using the device and method described in Section 2.2, the trial formulations were
subjected to an accelerated simulation of seawater exposure. Previous studies have shown
that the corrosion potential (Ecor) measured during such exposure provided data that
correlated with long-term salt spray test results. From these data, a parameter, tbp, could
be derived, representing the exposure time required for Ecor (or open-circuit potential,
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OCP) of the respective Zn primer test panels to reach the transition phase. The protection
mechanism of zinc primer coatings can be described in three phases:

1. Phase of Cathodic Protection (PCP): During this phase, the open-circuit potential
(OCP) is approximately −1.05 V to −0.86 V vs. SCE. The zinc pigments are in
electrical contact with the substrate, providing cathodic protection against corrosion.
This continues until the corrosion potential of the substrate (OCP(Fe) = −0.86 V vs.
SCE) is reached.

2. Transition Phase (TP): In this phase, the OCP ranges from −0.86 V to −0.70 V vs. SCE.
Zinc is progressively oxidized and no longer provides complete corrosion protection
for the steel substrate.

3. Barrier Phase (BP): When the OCP exceeds −0.70 V vs. SCE, zinc no longer offers
significant cathodic protection. However, the formation of bulky zinc corrosion
products fills pores, which may close diffusion paths.

The thermocyclic electrolytic loading (TEL) imposes additional stress on the primers.
Continuous temperature fluctuations lead to repeated contraction and expansion of the
sample, causing additional stresses at the interfaces between pigment, binder, and substrate.
This increases the likelihood of bond breakage within the polymer binder chains. In this
short-term test, Zn-primer test panels were examined to determine the extent to which
performance in the salt spray test correlates with the TEL results. The results are shown in
Figure 4. Their potential values shown were measured at room temperature (approximately
20–25 ◦C) after each cycling step. The PCP phase shown in Figure 4 refers to the cathodic
corrosion protection phase (PCP), which examines the potential behavior of the coating
system. This phase highlights the protective effect of the coating in anodic environments,
particularly in inhibiting corrosion through active layer components.
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The following insights can be derived from the data displayed in Figure 4: Sample
R0/1 (35% zinc dust) shows no cathodic protection, as expected. In contrast, the aqueous
primer formulation F1/b reaches a potential of −0.7 V during the first 80 h of TEL but does
not exceed this value. Sample R0/2 (60% zinc dust) exceeds the threshold of −0.7 V within
the first 20 h of TEL but still shows no cathodic protection, while F1/a provides acceptable
cathodic protection for 50 h of TEL. After an initial phase, the open circuit potential (OCP)
of sample R2/1 (35% zinc flakes) drops to an active potential and exceeds −0.7 V after about
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150 h. R2/2, a mixture of zinc flakes and standard zinc dust, shows much higher initial
potentials and becomes “active” later but reaches the barrier phase earlier in comparison
to R2/1—smaller pigments accelerate this process. In contrast, F1/c (zinc dust and zinc
flakes) exceeds −0.7 V before 20 h of TEL. The formulation R2/3 (zinc dust, zinc flakes,
and zinc phosphate) reaches OCP values well below −0.86 V, indicating active corrosion
protection, and remains active for at least 150 h of TEL. The corresponding variant in
the aqueous primer, F1/d, shows OCP values well below −0.86 V, remains active, and
meets the transition phase after 60 h of TEL, indicating active corrosion protection. Sample
R3 (35% surface-treated zinc pigment), however, shows no phase of cathodic protection,
corresponding to a more “passive” state observed in the polarization experiment; here,
OCP enters the barrier phase after 18 h. In contrast, F1/g maintains its OCP constant.
R6 (35% zinc dust, 0.6% graphene) behaves similarly to F1/h but shows a brief period of
cathodic protection (11 h). R7 (35% zinc dust, 0.6% CNT) briefly drops below −0.7 V but
never shows signs of cathodic protection.

3.2.2. Detection of Water Uptake Reversibility (WUR)

The anticorrosion properties of a coating significantly decrease if the exchange of
adsorbed water is slowed down or inhibited. Therefore, a loss of WUR can be seen as
an early and sensitive indicator of imminent degradation of a coating’s anticorrosion
properties. In the case of comparing water-based with VOC-based systems, the WUR is a
relevant parameter that describes the resistance of a coating under the influence of cyclic
damp stress.

In the case of long-lasting wet/dry cycles, it is important that coatings can completely
release absorbed water; otherwise, more and more water will accumulate over time. In each
case, the zinc primer samples were cycled as described. ∆C3 and ∆A may be taken as a
measure for the loss of WUR. Here, ∆C3 represents the difference in water uptake detected
at low temperatures and caused by the effect of eight temperature cycles (cf. Figure 5). In
contrast, ∆A represents the difference between the capacitance amplitude obtained for the
first and for the last thermocycle. Thus, it documents the thermocyclically caused loss of
resistance against thermally induced water uptake.
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In order to give a systematic interpretation of this data, the characteristics of these
studies are listed and compared in different contexts below. The initial capacitances allow
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correlations regarding the conductivities of the systems. Based on this, the following
conclusions become apparent: In the analysis of water reversibility between water-based
and solvent-based systems, it becomes apparent that water-based systems generally exhibit
higher overall water uptake but lower water reversibility compared to solvent-based
variants. Water-based primers tend to absorb more moisture, but their ability to release this
moisture is limited, leading to reduced water uptake reversibility. Due to the lower polarity
of organic solvents, the affinity of the coating for water is relatively low. As a result, the
coating absorbs less water. The absorbed water is also efficiently released again because the
solvent is not hygroscopic, and the film is less porous. Since water is a highly polar solvent,
water-based coatings have a greater affinity for absorbing moisture from the environment.
This leads to higher water absorption compared to solvent-based systems. At the same
time, such systems tend to release water less efficiently due to the possible interactions
between water and binders, as they are more hygroscopic. This can lead to some residual
moisture in the film.

An interesting aspect is the behavior of the zinc particles in both systems. Samples
with 60% zinc dust in spherical particle form (R0/2, F1/a) show relatively low water
uptake reversibility (WUR) in the solvent-based primer when considering ∆A, in contrast
to what the water-based primer shows. Figure 6 illustrates the differences in ∆A and ∆C3
values obtained from both the solvent-borne and water-borne systems. In solvent-based
systems, zinc supports the protective effect by drying faster, thus keeping moisture away.
In water-based systems, however, water absorption can be enhanced by the hydrophilic
zinc pigment, which further reduces the efficiency of water release. This suggests that
the large amount of zinc in both systems forms a barrier through oxidation products such
as zinc oxide and/or pore blockage that hinders the ingress and release of water. The
difference in how well this works lies in the polarity of the solvents used.
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The role of pigments, particularly zinc dust and zinc flakes, is also evident. In samples
where untreated zinc particles were used, low water reversibility was observed, especially
when the proportion of hygroscopic pigments like zinc phosphate was higher (R2/3,
F1/d). A higher ∆C3 value indicates that the coating retains an above-average amount of
water. A key factor in improving water reversibility is the organic treatment of zinc flakes
(R3_F1/g). Samples containing zinc flakes with wet organic treatment show improved
water reversibility in both systems. The organic treatment prevents water accumulation
while simultaneously improving the mechanical properties of the coatings. Notably, the use
of graphene in combination with zinc particles (R6_F1/h) is particularly emphasized. In
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samples containing 35% zinc dust and graphene, a significant reduction in water absorption
was observed. Graphene acts here as a reinforcing agent, significantly reducing the WUR,
which is attributed to an improved barrier effect.

Finally, untreated zinc flakes in both systems show significantly worse water reversibil-
ity compared to treated particles, which once again underscores the importance of particle
treatment for improving water resistance and reversibility (R2/2_F1/c). Well, these two
systems show (very) low DELTA A values but relatively large DELTA C3 values, so one
should at least acknowledge that no significant increase in amplitude is induced in these
systems; at R2/2, the amplitude of water absorption even decreases.

3.2.3. Recording of Kelvin Scans: Results

SKP detections were performed after several periods of salt spray test (SST) exposure.
These detections are aimed at the determination of delamination events. Moreover, the
exploration of a possible anticorrosive (cathodic) long-range effect is another goal of these
detection series. In each case, the center of the scanned area (10 mm × 10 mm) was adjusted
to the circular hole (ø 1.5 mm) drilled in the primer before SST exposure.

The first scan series is shown in Figure 7 and represents the SKP results of R0/2 (top)
and F1/a (bottom), which were used as a model for a standard zinc-rich primer (ZRP,
60% spherical standard zinc pigment). R0/2, a typical zinc-rich primer, appears to protect
the steel substrate well due to its high content of spherical zinc pigment. In the water-
based primer variant F1/a, a large amount of zinc (60 wt%) provides sufficient cathodic
protection to keep the entire defect area protected without any delamination occurring
within the defect.

Next, we compared the systems (R3 and F1/g) with (R0/1 and F1/a), as they contain
the same zinc pigmentation. However, the zinc pigments in R3 and F1/g are partially
surface-treated. The R0/1 and F1/b samples contain only 35 wt% zinc pigment and provide
better cathodic protection in the aqueous medium than in the solvent-based primer. In
both cases, the area around the defect does not seem completely free from corrosion effects.
However, as soon as the 35 wt% zinc dust is treated with an organic coating, an immediate
positive effect is observed in both media. Since this is accompanied by a homogeneous
cathodic zone in the defect, it can be assumed that the optimized F1g/R3 formulation
induces very good cathodic protection.

The presence of an organic treatment on the zinc pigments significantly reduces the
extent of the cathodic effect. Nevertheless, this treatment seems to reduce the penetration
of the electrolyte at the substrate-coating interface and slows down the consumption of
the zinc pigment in both the aqueous and solvent-based samples. The organic treatment
also improves the adhesion of the binder matrix to the pigment and, thus, to the substrate.
Therefore, the use of organically treated zinc pigments may be advantageous on a less
optimally prepared substrate.

For samples with reduced zinc content and graphite addition (represented by R6 and
F1/h), the solvent-based system R6 shows a complete loss of protection around the defect,
although the area further from the defect appears relatively homogeneous. It is assumed
that the presence of graphene improves the adhesion of the primer and significantly
hinders electrolyte diffusion at the interface through the defect. In comparison, the aqueous
system F1/h with graphite addition and reduced zinc content provides sufficient cathodic
protection to keep the entire defect cathodically protected, with the defect itself functioning
as the cathode. The addition of graphite with reduced zinc content significantly improves
protection in the aqueous system, while the solvent-based system experiences a complete
loss of protection around the defect.
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Figure 7. SKP scans obtained from Zn primers R0/2, R0/1, R3 (top), R6, F1/a, F1/b (second row), and 
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1.5 mm) is located approximately centrally in the scan area. 

Next, we compared the systems (R3 and F1/g) with (R0/1 and F1/a), as they contain 
the same zinc pigmentation. However, the zinc pigments in R3 and F1/g are partially sur-
face-treated. The R0/1 and F1/b samples contain only 35 wt% zinc pigment and provide 
better cathodic protection in the aqueous medium than in the solvent-based primer. In 
both cases, the area around the defect does not seem completely free from corrosion ef-
fects. However, as soon as the 35 wt% zinc dust is treated with an organic coating, an 
immediate positive effect is observed in both media. Since this is accompanied by a ho-
mogeneous cathodic zone in the defect, it can be assumed that the optimized F1g/R3 for-
mulation induces very good cathodic protection. 

The presence of an organic treatment on the zinc pigments significantly reduces the 
extent of the cathodic effect. Nevertheless, this treatment seems to reduce the penetration 
of the electrolyte at the substrate-coating interface and slows down the consumption of 
the zinc pigment in both the aqueous and solvent-based samples. The organic treatment 
also improves the adhesion of the binder matrix to the pigment and, thus, to the substrate. 
Therefore, the use of organically treated zinc pigments may be advantageous on a less 
optimally prepared substrate. 

Figure 7. SKP scans obtained from Zn primers R0/2, R0/1, R3 (top), R6, F1/a, F1/b (second row),
and F1/g, F1/h (bottom) obtained after 1000 h of salt spray test; the perforation inflicted by the drill
(ø 1.5 mm) is located approximately centrally in the scan area.

4. Conclusions
It is possible to obtain a stable water-based paint with good physical, mechanical, and

anticorrosive properties using both modified and unmodified zinc pigments. The addition
of zinc phosphate (5% by weight) improves the anticorrosive properties. The wet surface
treatment of zinc pigments with silanes has a positive effect on improving the anticorrosive
properties. Samples containing a higher content of zinc (e.g., 60 wt% zinc dust in R0/2
and F1/a) show better overall protection due to the strong barrier properties formed by
zinc particles. However, the performance can be significantly enhanced with the addition
of fillers and organic treatments (e.g., R2/3, F1/d). Organic treatments of zinc pigments
(as in R3 and F1/g) significantly improve the cathodic protection and water resistance
of coatings, as they reduce electrolyte penetration and slow zinc pigment consumption.
Untreated zinc particles, particularly in higher proportions of hygroscopic pigments, lead
to reduced water uptake reversibility and protection. Water-based primers tend to absorb
more moisture compared to solvent-based systems, but their water uptake reversibility is
limited. Organic treatment of zinc flakes helps to improve this water uptake reversibility,
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preventing moisture accumulation around the pigments and improving the mechanical
properties of coatings.

The addition of graphene (as in R6 and F1/h) to zinc-rich formulations reduces
DELTA A, i.e., the thermocycling does not induce a large expansion of the thermally
induced water uptake amplitude in these two samples and enhances the barrier effect,
leading to a reduction in corrosion. While solvent-based systems with graphene show
complete protection loss around defects, aqueous systems perform significantly better due
to sufficient cathodic throw.

Formulations with 60 wt% zinc content (such as R0/2 and F1/a) provide sufficient
cathodic throw to protect defect areas, but the overall performance can be improved by
reducing zinc content and optimizing with additional particulate components such as
graphite and treated pigments (e.g., in R2/3, F1/h).
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