Zerstörungsfreie Inspektion von Faserverbundbauteilen mit Computertomographie, Thermographie und Shearographie

Dipl.-Math. Ira Effenberger
Gruppenleiterin
Abteilung Bild- und Signalverarbeitung
Fraunhofer Institut für Produktionstechnik
und Automatisierung

Überblick

- Kurze Einführung
- Computertomographie:
 - Software zur 3D-Struktur- und- Defektanalyse, Analyseergebnisse
 - > 3D-Porositätsanalyse, Analyseergebnisse
- Kombinierte Prüfung mit Thermographie und Shearographie
- Thermographie und Computertomographie zur Inspektion von Faserverbundwerkstoffen
 - Thermographie-Gesamtsystems und automatisierte Datenauswertung in Thermographiebildern
 - Anwendungskatalog: Ergebnisvergleich von Thermographie und Computertomographie

Einführung

Faserverbundwerkstoffe

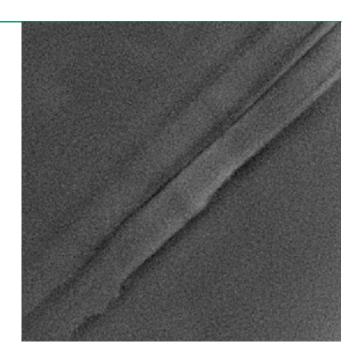
- Bekannte Faser-Kunststoff-Verbunde:
 - Kohlefaserverstärkte Kunststoffe (CFK)
 - Glasfaserverstärkte Kunststoffe (GFK)
- Günstige Eigenschaften:
 - hohe Steifigkeit und Festigkeit
 - geringe Dichte / geringes Gewicht
 - → Teilweise hohe Sicherheitsanforderungen bzgl. der Belastbarkeit.

Einführung

Anforderungen an die Qualitätskontrolle

- Zerstörungsfreie qualitative und quantitative Prüfung
- Frühe und zuverlässige Erkennung von Defekten
- Untersuchung innerer Strukturen, z.B. Faserverteilung
- Einsatz der Prüftechnologie möglichst auch im Prozess

Kombinierte Inspektion von Faserverbundwerkstoffen mit Computertomographie und Thermographie bzw. Thermographie und Shearographie

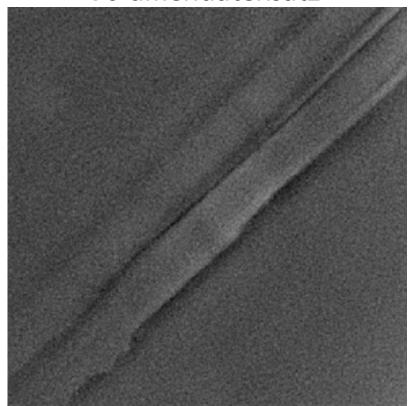

Computertomographie zur Analyse von Faserverbundkunststoffen

- Mittels Computertomographie werden Faserverbundbauteile hochauflösend erfasst
- Vorteile:
 - innere Fehler und innerer Aufbau sichtbar
 - zerstörungsfrei
- Nachteile:
 - zeitintensiv sowohl bei der Aufnahme als auch bei der Analyse

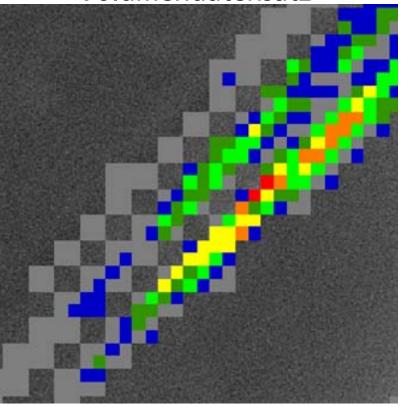
Struktur von Faserverbundkunststoffen

3D-Defektanalyse

- Fasern und Faserverteilung bilden Grundstruktur
- Fehler sind Abweichungen von der Grundstruktur
- Komplexer dreidimensionaler Aufbau erfordert 3D-Analyse
- ⇒Entwicklung einer 3D-Defektanalysesoftware mit folgenden Eigenschaften:

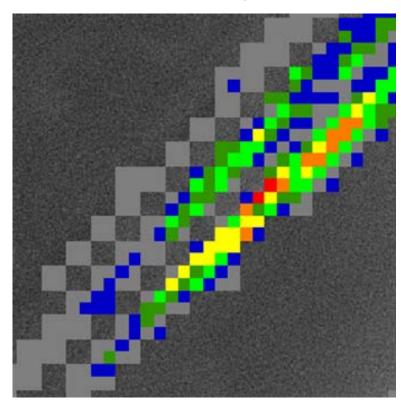


- Empfindlichkeit wird über Parameterwahl eingestellt
- Fehlbereiche werden farblich markiert
- Analyseergebnis wird als Volumendatensatz gespeichert



3D-Defektanalyse

Schnitt durch Volumendatensatz



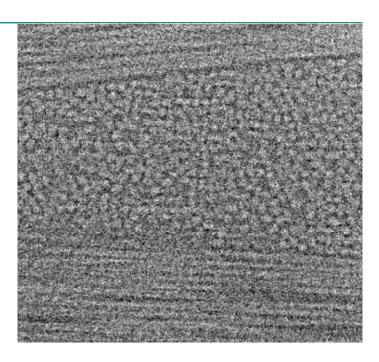
Schnitt durch analysierten Volumendatensatz

3D-Defektanalyse

Defektanalyse

Maß der Heterogenität von schwach nach stark

Faserorientierung

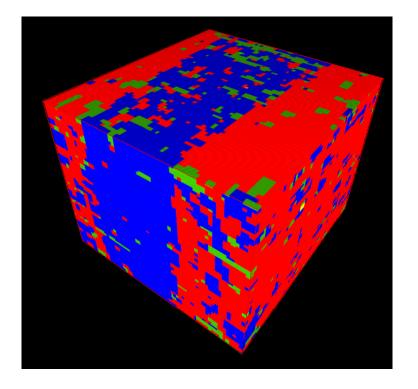

3D-Faserorientierungsanalyse

Ausrichtung der Fasern:

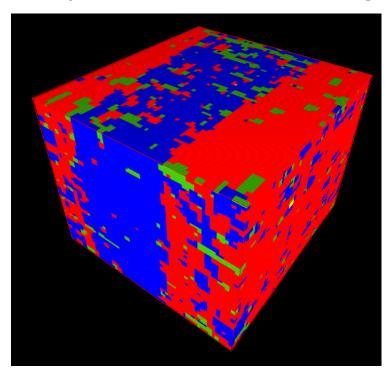
- wichtig für Stabilität und Steifigkeit
- ⇒ Faserorientierung entscheidendes Qualitätsmerkmal

Adaption der 3D-Defektanalysesoftware zur Analyse der Faserorientierung

- Auffinden der Strukturen
- Ignorieren von lokalen Abweichungen
- Parameter bestimmt Trennung der Fasern
- Faserorientierung wird farblich markiert



3D-Faserorientierungsanalyse


Volumendatensatz

Analysierte Faserorientierung

3D-Faserorientierungsanalyse

Analysierte Faserorientierung

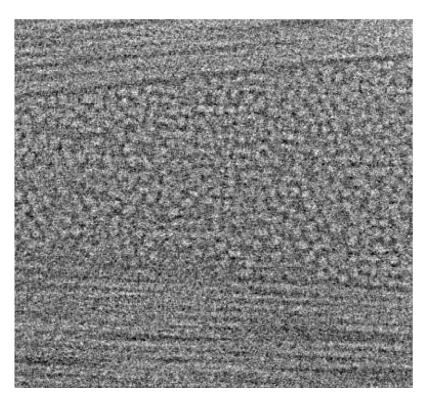
Orientierung in Richtung ...

...x-axis

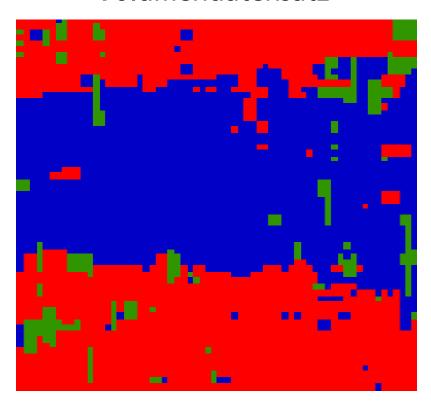
...y-axis

...z-axis

...(1,0,1) or (1,0,-1)


...(0,1,1) or (0,1,-1)

...(1,1,0) or (1,-1,0)


...(1,1,1), (-1,1,1), (1,1,-1) or (-1,1,-1)

3D-Faserorientierungsanalyse

Schnitt durch Volumendatensatz

Schnitt durch analysierten Volumendatensatz

Vorteile der Analysesoftware

3D-Defektanalyse:

- Fehler werden automatisch gefunden
- Eindeutige Visualisierung von Fehlbereichen
- Bestimmung der Fehlergröße und Ausrichtung

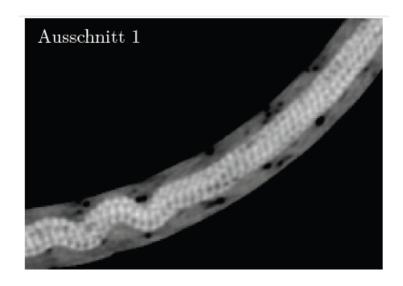
Analyse der Faserorientierung:

- Faserorientierung wird automatisch erkannt
- Faserschichten können segmentiert werden,
 dadurch Aussagen über Schichtdicke und Lagenaufbau möglich
- statistische Auswertung über Anzahl und Verteilung der Fasern

Poren von Faserverbundkunststoffen

3D-Porositätsanalyse

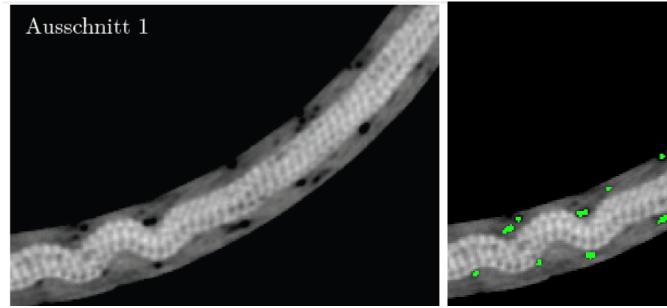
- Komplexe Zusammensetzung aus Fasern und Harz erschwert automatisiertes Auffinden aller Poren
- Keine Standardlösung speziell für Faserverbundkunststoffe am Markt

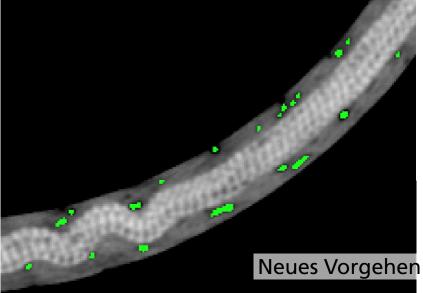


Entwicklung einer adaptiven 3D-Porositätsanalyse für Faserverbundkunststoffe

Merkmale

3D-Porositätsanalyse

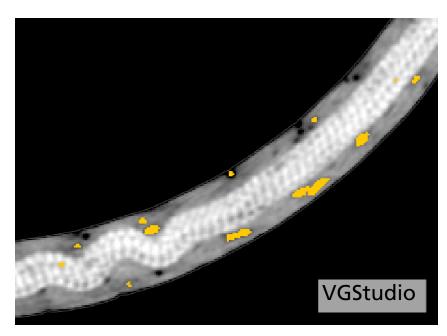

- Lokale Untersuchung statt globaler Schwellwert
- Manuelle Korrekturmöglichkeit
- Nutzerfreundlichkeit der Parameterbestimmung
- Preview Fenster

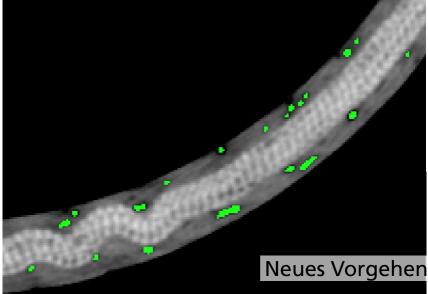


3D-Porositätsanalyse

Schnitt durch Volumendatensatz

Schnitt durch analysierten Volumendatensatz

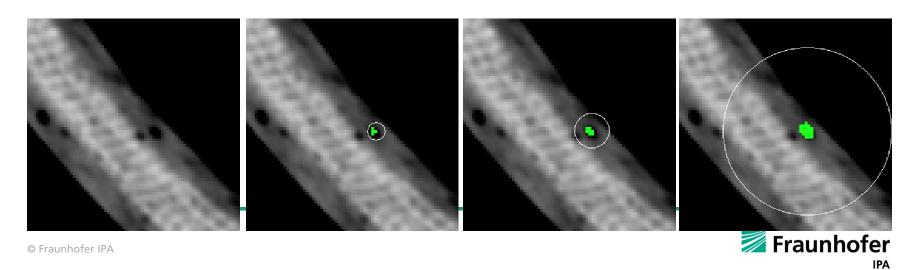



Vergleich mit VGStudio

3D-Porositätsanalyse

Schnitt durch Analyseergebnis mit VGStudio

Schnitt durch analysierten Volumendatensatz

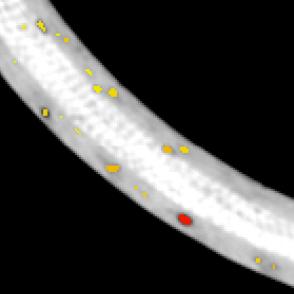


Manuelle Korrektur

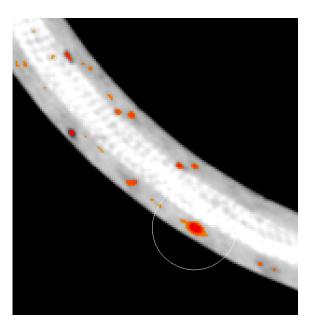
3D-Porositätsanalyse

Möglichkeit zum manuellen

- Einfügen einer Pore durch Mausklick und Ziehen: lokale, automatische Analyse
- Löschen einer Pore durch Mausklick
- ⇒ Benutzerfreundliche Ergebnisoptimierung mit direktem visuellem Feedback



Verschiedene farbkodierte Visualisierungen


3D-Porositätsanalyse

abhängig vom Volumen der Pore

abhängig von Porentiefe über die Voxelschichten

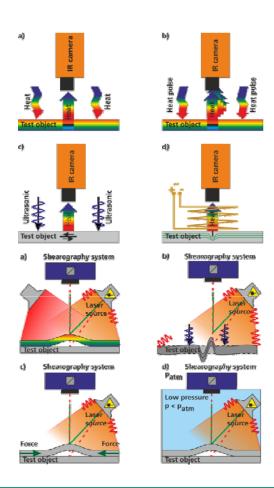
abhängig vom darunterliegenden Grauwert

Vorteile

3D-Porositätsanalyse

- Sehr gute Ergebnisse
- Poren werden automatisch gefunden und dargestellt
- Direkte Visualisierung bei Parameteränderung in aktueller Schicht
- Parameter schnell und einfach anpassbar
- Manuelle Nachbearbeitung möglich

Leichtbauprüfung durch Kombination von Thermographie und Shearographie



Warum ein kombiniertes Sensorsystem?

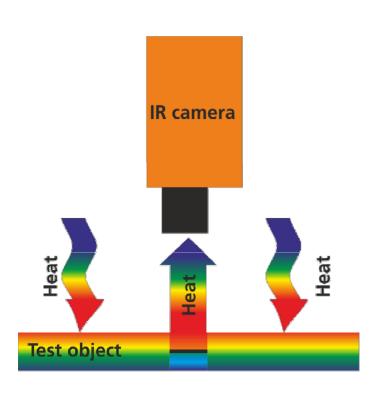
- Ausnutzung der verfahrensspezifischen Stärken zum Defektnachweis
- Verfahrensredundanz durch unabhängig arbeitende Prüfverfahren
- Ökonomische Aspekte
 - Reduzierung Rüst- bzw. Prüfzeit,
 - geringerer Hardwareaufwand bei geeigneter Sensorwahl
 - Reduzierung Scheinausschuß
 - •
- Neue Möglichkeiten bei der Auswertung

Kombination von Thermographie und Shearographie

Vorteil:

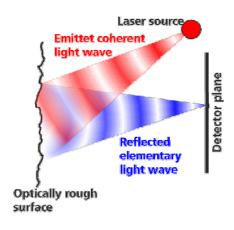
Nutzung der gleichen Anregungsquelle für beide Verfahren

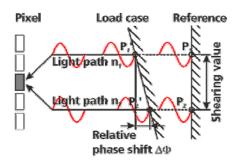
Prinzip:


Thermische Anregung induziert thermische Dehnungen

Thermographie → Temperaturfeld Shearographie → Deformationsfeld

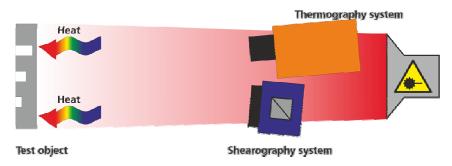
Komplementäre Verfahren liefern Ansätze für intelligente Auswertemethoden


Prinzip der aktiven Thermographie



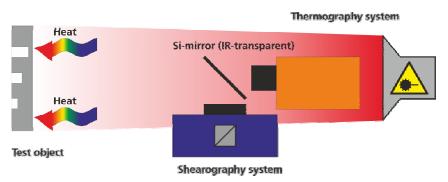
- Zugeführte Energie induziert im Bauteil Wärmefluss
- Wärmefluss wird an Grenzflächen gestört und verursacht Inhomogenitäten im Temperaturfeld an der Bauteiloberfläche
- Örtliche und zeitliche Analyse des Temperaturfeldes lässt Rückschlüsse auf Bauteilzustand zu

Prinzip der digitalen Shearographie



Speckleinterferometrisches Verfahren

- Aufnahme
 Speckleinterferogramme bei unterschiedlichen Lastzuständen
- Pixelweise Subtraktion der Speckleinterferogramme
- Singuläre Verformungen ergeben Änderung der relativen Phasenlage
- Bestimmung des Verformungsgradienten aus der relativen Phasenlage



Realisierung Multisensorsystem

Zwei Möglichkeiten

- Getrennte optische Achse
- Gemeinsame optische Achse

Aufgaben

- Abstimmung Anregung
- Ermittlung optimaler Prüfablauf
- Pixeltreue Abbildung beider Ergebnisse
- Geeignete Ergebnisdarstellung

Bewertungskriterien für Prüfverfahren

Probability Of Detection Probability of False

Probability of False
Alarm

Receiver Operator Characteristic

POD

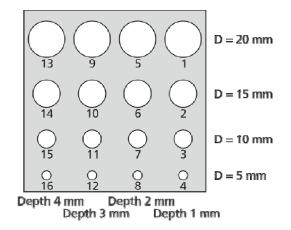
Wahrscheinlichkeit für die Erkennung von Merkmalen oder Eigenschaften

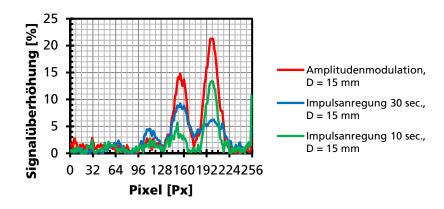
PFA

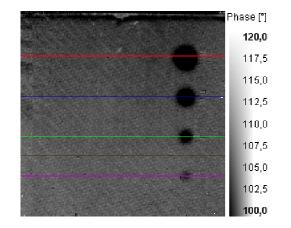
Wahrscheinlichkeit für Falschalarme

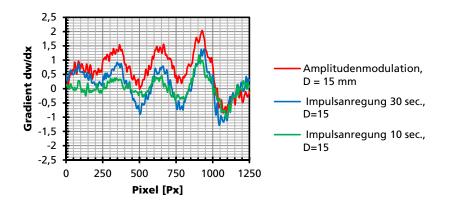
ROC

Verhältnis von Auffindwahrscheinlichkeit zu Wahrscheinlichkeit Falschanzeige

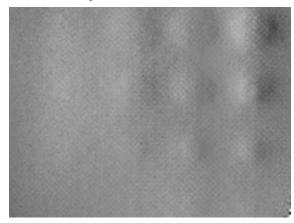

Maß für Zuverlässigkeit

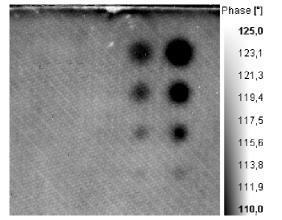

$$POD = \frac{\sum Richtige NIO}{\sum Richtige NIO + Falsche NIO}$$


$$PFA = \frac{\sum Falsche 10}{\sum Richtige 10 + Falsche 10}$$

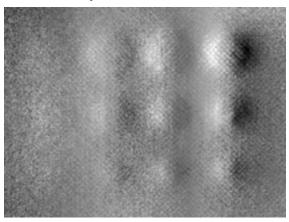

$$ROC = \frac{POD}{PFA}$$

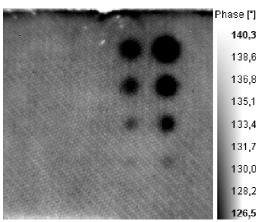
Grundlagenuntersuchungen



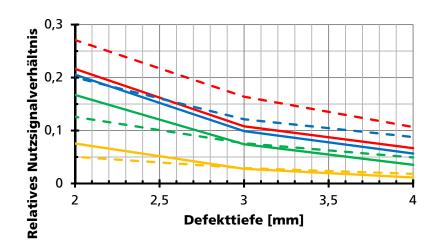


Ergebnisbeispiel Grundlagenuntersuchung

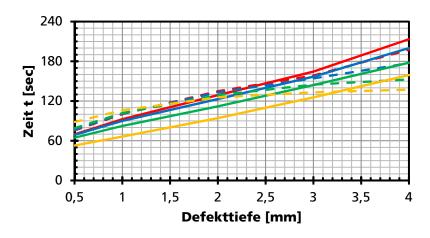

Vergleich der optischen Anordnung (Anregung amplitudenmoduliert, synchrone Datenaufnahme)

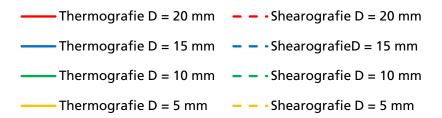

Eine optische Achse

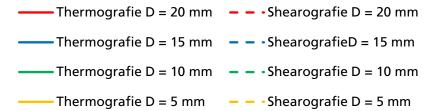
Zwei optische Achsen


Shearographie

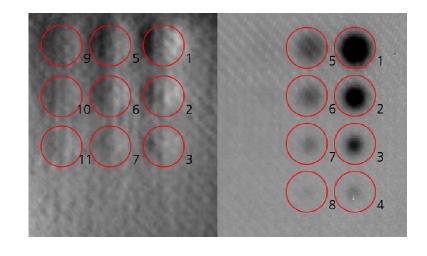
Thermographie




Ergebnisse Grundlagenuntersuchung


Vergleich Tiefenreichweite

Vergleich Messdauer bis Maximum



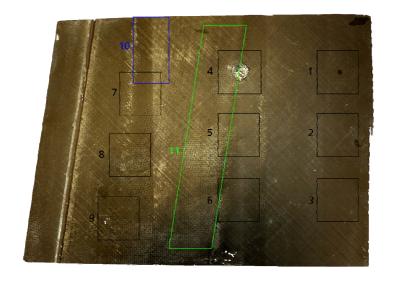
Defektnachweis Grundlagenuntersuchung

Kleine, oberflächennahe Defekte werden mit Thermographie detektiert

Tieferliegende, ausgedehnte Defekte lassen sich mit Shearographie besser detektieren

POD:

Thermographie: 66 %


Shearographie: 75 %

Kombiniertes System: 92 %

Verbesserung der Auffindwahrscheinlichkeit mit kombiniertem System um 20 %

Untersuchung eines CFK Strukturbauteils

CFK Luftfahrtstruktur 400 x 400 mm

Anregung: thermisch

Messdauer: 130 sec.

Defekte: 1 – 9 Impacts

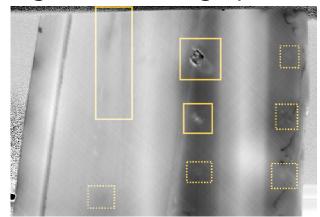
10 Delamination

11 Porösität

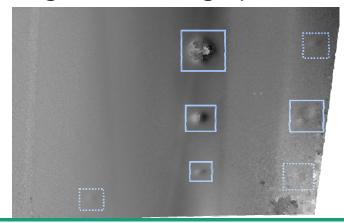
Untersuchung mit Multisensorsystem

Gemeinsame Anregungsquelle

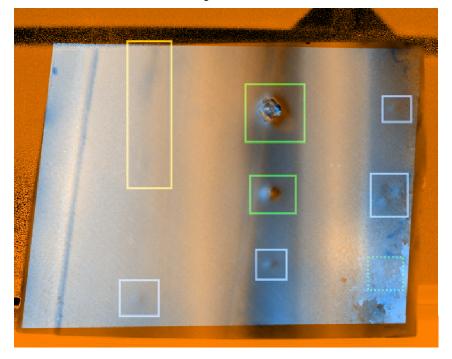
Thermographie Lockin Auswertung


Shearographie Auswertung der

Abkühlung



Ergebnisbeispiel CFK Strukturbauteil


Ergebnis Thermographie

Ergebnis Shearographie

Zusammenfassung der Ergebnisse für Multisensorsystem

Defektnachweis CFK Strukturbauteil

Defekt	Thermo	Shearo	Multi
Impact 1	-	-	+
Impact 2	-	+	+
Impact 3	-	-	-
Impact 4	+	+	+
Impact 5	+	+	+
Impact 6	-	+	+
Impact 7	0	0	0
Impact 8	0	0	0
Impact 9	-	-	+
Delamination	+	0	+
Porosität	+	0	+

^{+ =} sicher nachweisbar,

Detektion	Thermo	Shearo	Multi
Sicherer Nachweis	36 %	36 %	72 %
Unsicherer Nachweis	81 %	63 %	81 %

Deutliche Verbesserung der POD für sicher nachweisbare Defekte.

Keine wesentliche Verbesserung bei Berücksichtigung der schwer nachweisbaren Defekte.

Aber: Klare Verbesserung der Nachweissicherheit bei unsicher nachweisbaren Defekten.

^{- =} schwer nachweisbar,

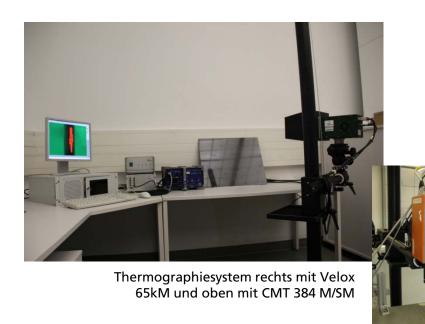
o = nicht nachweisbar

Fazit

- Multisensorsysteme liefern bei geeigneter Sensorkombination deutliche Verbesserungen im Defektnachweis bzw. verbessern die Nachweissicherheit
- Mit Multisensorsystemen kann effizienter und ökonomischer geprüft werden, da sowohl Prüfzeit als auch Prüfhardware reduziert werden
- Multisensorsysteme bestehend aus Thermographie und Shearographie eignen sich besonders für Bauteile aus modernen Composite Werkstoffen

Ausblick

- Entwicklung Kompaktgerät
- Verbesserung der Ergebnisdarstellung
- Entwicklung selbstlernender Auswertungsstrategien



Thermographie und Computertomographie zur Inspektion von Faserverbundwerkstoffen

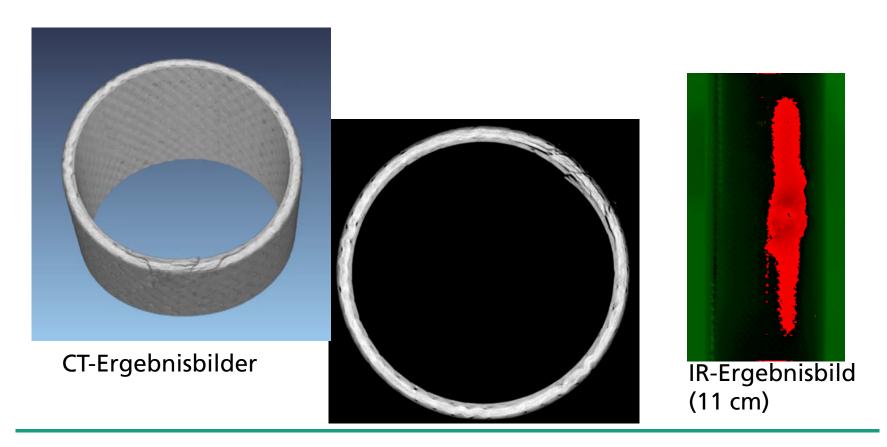
Thermographie Gesamtsystem

Das IR-Prüfsystem wurde modular aufgebaut, wie folgt :

- Zwei IR-Kameras: CMT 384 M/SM Thermosensorik und Velox 65kM Pro von IRCam
- Anregungseinheiten, die modular, abhängig von der Teilegeometrie, angebaut werden können:
 - Blitzlampe
 - Heizstrahler
 - Laser
- PC-System mit nötigen Hardware-Schnittstellen

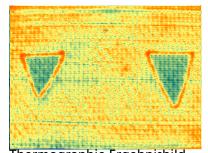
Thermographie Gesamtsystem

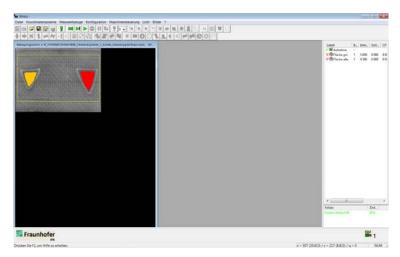
Thermographie-Datenaufnahme


- CT-Daten von definierten Prüflingen wurden als Referenz benutzt wie z.B. Rohre mit verschiedenen Impact-Schäden (5 J, 20 J, 40 J) und CFK-Platten mit Impactschaden
- Verschiedene Anregungseinheiten wurden eingesetzt, um die optimale Datenaufnahme zu gewährleisten
- Die Zwischenergebnisse haben gezeigt, dass eine perfekte, prinzipielle Korrelation zwischen den CT-Daten und den Thermographiedaten festzustellen ist

Thermographie Gesamtsystem

Thermographie-Datenaufnahme


Testteil I: Rohre -> Fehler: Impact-Schaden mit 40 J


Datenauswertung

Bildverarbeitung: i.O./n.i.O.

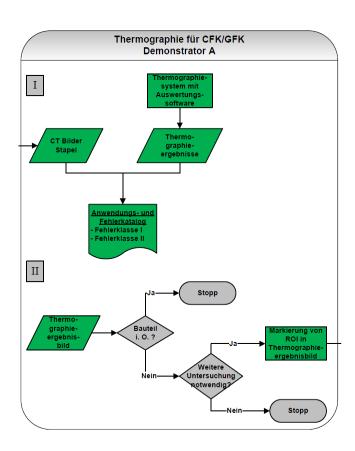
- Die Ergebnisse der Thermographieauswertungen werden mit verschiedenen Bildverarbeitungsalgorithmen innerhalb der Fraunhofer IPA SW-Plattform EMSIS analysiert, um eine automatische i.O/n.i.O. Information zu erhalten
- Die Fehlerbereiche werden im Ergebnisbild farblich markiert dargestellt

Thermographie Ergebnisbild Links: Kohledoppler Biax, Rechts: Glasdoppler Biax

Ergebnis - Bildverarbeitung

Anforderungsanalyse

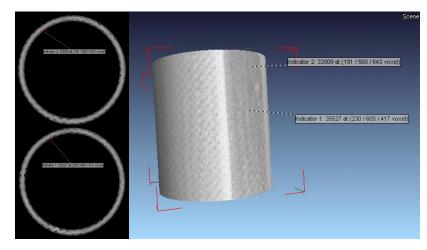
Identifizierte, zu untersuchende Fehlergruppen/-arten:

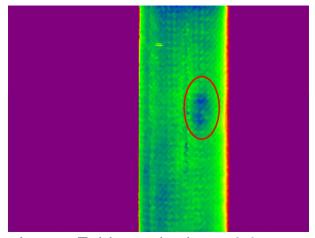

- 1. Fehlende Strukturen/ Einschlüsse
- 2. Identifikation nicht benetzter Stellen
- 3. Erkennung von Einschnitten
- 4. Impactschäden bei zylindrischer und bei planarer Form
- 5. Erkennung von Fäden der Trägerstruktur
- 6. Poren, Lunker, Löcher
- 7. Ondulation
- 8. Trockenstelle
- 9. Harzüberschuss bzw. Materialüberschuss

Vorgehen

Thermographie und CT im Vergleich

- a) Unabhängige Datenerfassung der Testbauteile bzw. Fehlstellen mit Thermographie und CT
- b) Auswertung der CT-Daten zur Nutzung als Referenzen für Thermographiebilder: Fehlernachweis, Fehlerausbreitung, u.v.
- c) Thermographieauswertung und anschließender Datenvergleich
- d) Ableitung der Eignung und Grenzen der Thermographie für jede Fehlerart.

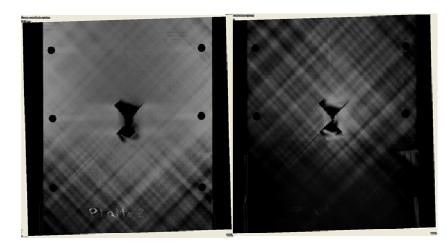


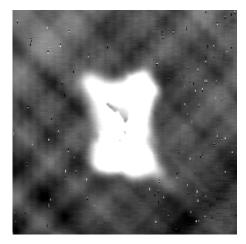

Impactschäden bei zylindrischer Form - Thermographie und CT

Testbauteile: Drei CFK-Rohre mit Impactschäden 5J, 20J und 40J

- IR-Ergebnis: 100% Qualitative Prüfung mit automatischer i.O/n.i.O
 Auswertung, solange Tiefe <= Fehlerfläche im Bild
- CT-Ergebnis: Vollständige qualitative und quantitative 3D-Prüfung/Messung

CT Rohr 5J: Innere Fehlerausbreitung entlang Mantellinie **1.67 cm**

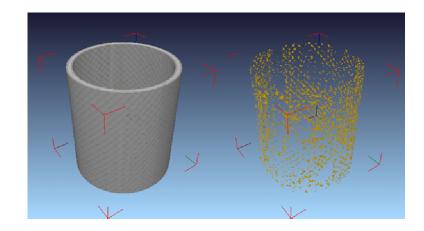

Innere Fehlerausbreitung 1,6 cm

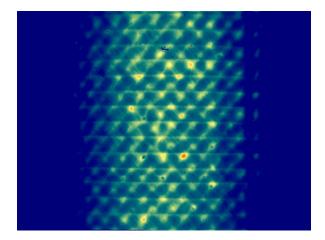

Impactschäden bei planarer Form - Thermographie und CT

Testbauteile: Vier CFK-Platten mit starken Impactschäden

- IR-Ergebnis: 100% Qualitative Prüfung mit automatischer i.O/n.i.O
 Auswertung, solange Tiefe <= Fehlerfläche im Bild
- CT-Ergebnis: Vollständige qualitative und quantitative 3D-Prüfung/Messung

CT Platte 2 Schnittbilder: Keine/kaum inneren Fehlerausbreitung erkennbar


IR Platte: Keine/Kaum innere Fehlerausbreitung erkennbar

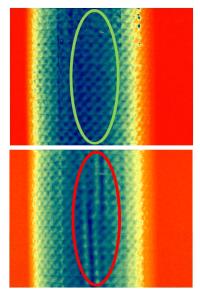

Poren, Lunker, Löcher - Thermographie und CT

Testbauteil: Rohr

- IR-Ergebnis: qualitative Aussage über Existenz von Poren möglich, solange
 Tiefe Pore <= Fehlerfläche im Bild
- CT-Ergebnis: Vollständige qualitative und quantitative 3D-Analyse möglich

CT Rohr: 3D-Ansicht vollständig (links) und nur Poren (rechts): Porosität 1,71%

IR Rohr: Poren qualitativ erkennbar

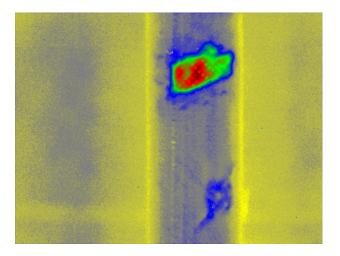

Ondulation - Thermographie und CT

Testbauteil: Rohr

- IR-Ergebnis: qualitative Aussage über Existenz, Lage und Größe von Ondulationen möglich, solange Tiefe <= Fehlerfläche im Bild
- CT-Ergebnis: Vollständige qualitative und quantitative 3D-Prüfung/Messung

CT Rohr: Schnittbilder mit sichtbarer Lageverschiebung/Wellenbildung

IR Rohr: Ondulation gut erkennbar


Trockenstelle - Thermographie und CT

Testbauteil: Rohr

- IR-Ergebnis: 100% Qualitative Prüfung, mit automatischer i.O/n.i.O
 Auswertung, solange Tiefe <= Fehlerfläche im Bild
- CT-Ergebnis: Vollständige qualitative und quantitative 3D-Prüfung/Messung

CT Rohr: Schnittbild und 3D-Ansicht mit sichtbarer Trockenstelle

IR Rohr: Trockenstelle deutlich erkennbar

Allgemeine Aussagen/Einschränkungen

Thermographie:

100% Qualitative Prüfung mit automatischer i.O/n.i.O Auswertung ist für eine Fehlerart möglich, solange die Tiefe des Fehlers <= Fehlerfläche in Bildebene, allerdings maximal 2 cm unter der Oberfläche.

Computertomographie:

Vollständige qualitative und quantitative 3D-Prüfung und/oder Messung ist unter der Voraussetzung möglich, dass die Voxelauflösung (Strukturauflösung) ausreichend hoch ist, dass der Fehler abgebildet werden kann.

Ergebniszusammenfassung

Thermographie liefert ausreichende qualitative Aussagen mit der Möglichkeit zur ROI-Bestimmung für weiterführende CT- oder andere sensorische Auswertungen:

- Fehlende Strukturen/Einschlüsse: Fehlende Schichten, Einschlüsse, Verklebungen, Materiallegefehler bei realen Bauteilen
- Impactschäden: äußere sowie inneren Rissausbreitung bzw. Delaminationen, Schäden bei Lochungen bei realen Bauteilen
- Erkennung von F\u00e4den der Tr\u00e4gerstruktur: Faserverschiebung, Faden-Nahtverschiebung, fehlende Naht bei realen Bauteilen
- Poren/Lunker
- Ondulation: Lageverschiebung, Wellenbildung im Inneren bei realen Bauteilen
- **Trockenstelle:** Fehlendes Harz, keine Aushärtung bei realen Bauteilen

